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Abstract—Laminar natural-convection heat transfer from a horizontal isothermal cylinder is studied by

solving the Navier-Stokes and energy equations using an elliptic numerical procedure. Results are obtained

for 10° < Ra < 107. The flow approaches natural convection from a line heat source as Ra — 0 and laminar

boundary-layer flow as Ra — 0. Boundary-layer solutions do not adequately describe the flow and heat

transfer at low or moderate values of Ra because of the neglect of curvature effects and the breakdown of the

boundary-layer assumptions in the region of the plume. Good agreement with experimental results is
achieved.

NOMENCLATURE
D, cylinder diameter;
g, gravitational acceleration;
h, local heat-transfer coefficient;
h, average heat-transfer coefficient around
cylinder;
k, thermal conductivity of fluid;
L, radial distance between cylinder surface and

outer boundary of solution domain;
Nu, local Nusselt number, hD/k;
Nu, average Nusselt number, hD/k;
Pr, Prandtl number, v/o;

0, heat transfer from cylinder per unit length,
haD(T, — T.);

R, radial coordinate;

r, dimensionless radial coordinate, R/D;

Ra, Rayleigh number, g8D* (T, — T.)/va;

T, temperature;

T,, temperature of cylinder surface;
T,.. temperature of ambient fluid;

U, radial velocity, positive outwards;
U*, UD/aRa'’*;

u, dimensionless radial velocity, UD/u;
v, angular velocity, positive upward;
V*  VD/aRa'?;

v, dimensionless angular velocity, VD/a;
Y, radial distance from cylinder surface;

Y*  YRa'//D.

Greek symbols

a, thermal diffusivity ;
B, thermal coefficient of volumetric expansion ;
0, angular coordinate, zero is downward verti-

cal, positive counter-clockwise on right half
of cylinder, 0 < 0 < =;

o, dimensionless temperature,
(T-TINT, - T.);

A¢, difference between adjacent dimensionless
isotherms;

Y, dimensionless stream function

Ay, difference between adjacent dimensionless
streamlines;

w, dimensionless vorticity.
Subscripts
i, radial grid number;
J angular grid number.
INTRODUCTION

NATURAL convection about a single horizontal cir-
cular cylinder of uniform temperature suspended in an
infinite fluid medium has been studied both experi-
mentally and analytically for several decades [1]. At
small Rayleigh numbers the cylinder behaves like a
line heat source. Asymptotic matching solutions have
been obtained at low Rayleigh numbers by Nakai and
Okazaki [2], where an inner conduction-dominated
region is matched to an outer region governed mainly
by convection.

For moderately large Rayleigh numbers, 10* < Ra
< 10®, the flow is laminar and forms a boundary layer
around the cylinder. The assumptions usually made are
that curvature effects and the pressure difference across
the boundary layer are negligible. Using these assum-
ptions, the simplified boundary-layer equations have
been solved using a variety of techniques. Hermann
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[3] modified Pohlausen’s similarity solution for the
vertical flat plate at Pr = 0.733. The boundary-layer
thickness at different angles around the cylinder was
obtained by multiplying the flat-plate boundary-layer
thickness by a parameter that is a function only of
angle from the stagnation point. The vertical flat-plate
boundary-layer solutions given by Ostrach [4] can be
used to obtain solutions at other Prandtl numbers.
Merk and Prins [5] obtained a similarity solution
valid near the stagnation point and later presented an
integral solution. Another integral solution was given
by Levy [6]. Chiang and Kaye [7] used a Blasius
expansion to obtain solutions for cylinders with
varying wall temperature at Pr = 0.7. A Gortler
expansion technique was used by Savilie and Churchill
[8] to investigate the effect of the Prandtl number. A
solution to the transient problem was obtained by
Elliott [9] with the results at infinite time given as the
steady-state solution. Lin and Chao [10] used a Merk-
type series to obtain solutions for various two-
dimensional and axisymmetric geometries with the
horizontal circular cylinder as a special case. Finite
difference solutions have been obtained by Merkin
[11,12] for horizontal circular and elliptic cylinders of
uniform temperature or uniform heat flux.

Investigations incorporating curvature effects have
been made by Akagi [13], Peterka and Richardson
[14] and Gupta and Pop [15]. The curvature effects
were found to be small when Ra > 10° near Pr = 1.
However, Akagi remarks that for Pr « | or Pr » 1
curvature effects exist even at a very large Rayleigh
number.

The objective of this study is a solution of the
complete Navier-Stokes and energy equations for
natural convection about a horizontal isothermal
circular cylinder. Solutions have been obtained over a
wide range in Rayleigh number, 10° < Ra < 107,
where neither asymptotic matching techniques nor
boundary-layer assumptions are accurate. Results
include the development of the buoyant plume which
cannot be obtained using boundary-layer methods.
The solutions are compared with experimental data
for verification.

GOVERNING EQUATIONS

The dimensionless equations for steady, laminar,
natural-convection flow can be written in cylindrical
polar coordinates using the Boussinesq approxi-
mation as follows:

Vi = —w, (1)
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The flow is considered to be symmetric about the
vertical plane passing through the center of the
cylinder so that the flow on only one side needs to be
solved. The boundary conditions become

u=rtr=y =0,

W= -

on the impermeable isothermal cylinder surface and

cu
L‘:w:a):———r— = -

=2y
cd o

(6}
on the symmetry lines. The outer boundary must be
treated as two parts; one with fluid coming into the
solution domain, the other with fluid leaving. The fluid
is assumed to approach the cylinder radially at
ambient fluid temperature. The inflow boundary con-
ditions are

oy
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The fluid is assumed to leave radially in the plume with
negligible radial-temperature gradient. This is a com-
mon type of outflow boundary condition providing

=¢)=0. w =

{7)

the velocity is large (i.e. Pe » 1). The outflow
boundary conditions become
oMy 0 1 &y
== 020, we= — oy
T Ty T VT TG ®

SOLUTION TECHNIQUE

A finite-difference overrelaxation method is used to
solve the elliptic equations numerically. A central
differencing scheme is used for the majority of the
solutions although a hybrid technique is used to
maintain stability at large Ra. For example, equation
(3) can be written in finite difference form as

bii= N1+ 891,

+ E iy + Wi 9)
The coefficients are calculated as follows:
] Ari Ari Ar,-
Nij= H 1+ Erai N 0. —u;; :ﬂ (10)

where the first term in the brackets is the standard
central-difference formulation. Similar expressions are
used to obtain §; ;, E; ; and Wi ;. It can be seen from
equation (10) that when the velocity is large the
central-difference coefficients can become negative
leading to divergence in the computations. By taking
the largest non-negative term of the three terms in the
brackets the coefficients N', S, E' and W’ remain
positive or zero. The coefficients used in (9) are then
obtained as

Q=N ;+8,;+E;+ W
N;,;= N /@ S§;;= S:.,/Qs
E.;=E /O, W, ;=W /0

111)

(12)

When the velocities are small this scheme reduces to
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FiG. 1. Streamlines and isotherms at four values of the Rayleigh number, Pr = 0.7.

the second-order central-difference formulation.

The radial grid spacing is basically 0.1L although
this is reduced to as low as 0.0125L near the cylinder.
The angular grid lines are spaced every 10° except in
the region of the plume where a 2.5° angular spacing is
used. The position of the outer boundary has an effect

HM.T. 23/7—E

on the results if it is not set far enough from the surface
of the cylinder. The distance varies from D < L < 20D
depending on the Rayleigh and Prandtl number. Only
results from the inner 2/3 of the solution domain are
presented since those of the outer 1/3 depend slightly
on the location of the outer boundary. The change of
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outer-boundary conditions from inflow to outflow is
set near § = 150°, which is near the position of the
maximum stream function. Moving 10° either side of
this position does not change the results significantly.
Further details of the numerical method are given in
reference [16].
NUMERICAL RESULTS

Several solutions are obtained at Pr = 0.7 over the
range 10° < Ra < 107. Stream lines and isotherms
from some of these are shown in Fig. 1. The tempera-
ture distribution at Ra = 10° given in Fig. 1(a)
resembles what would be found near a line heat source.
The flow is basically upward, convecting heat from the
cylinder in a well-defined plume. The Rayleigh number
is above the range covered by Nakai and Okazaki [2],
so a direct comparison is not possible. Analysis of a
buoyant plume above a horizontal line heat source
indicates that the center line temperature should be
proportional to the — 3/5 power of the distance above
some starting point when the plume is fully developed.
This has been confirmed experimentally by Schorr and
Gebhart [17]. The calculated plume center line tem-
perature for Ra = 10° and Pr = 0.7 is correlated by

R\"'? R
¢:0.80( ) , =15

D (13)
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where R is the vertical distance measured from the
center of the cylinder. The same slope correlates the
plume center line temperature when Ra = 10" and 10’
providing the center of the cylinder 1s the origin. This
indicates that the plume has not reached a fully
developed condition in the present solutions.

At larger Rayleigh numbers a boundary layer forms
around the cylinder as shown in Fig. Hc) and 1{d}. At
Ra=10* the boundary-layer thickness is approximately
equal to the cylinder radius. The assumption of
negligible curvature effect is not valid at this Rayleigh
number so the solution to the boundary-layer equa-
tions does not give valid results here. However, at Ra
= 10° the boundary-layer thickness has become much
thinner than the cylinder radius as shown in Fig. 1(d) so
the boundary-layer model should give fairly accurate
results. The majority of the flow approaches the
cylinder from the side as opposed to the bottom at
large Rayleigh numbers. This agrees with the experi-
mental observations of Athara and Saito [18].

Velocity and temperature distributions at Rg = 10°
and Pr = 0.7 are given in Figs. 2-4 The angular
velocity distributions shown in Fig. 2 for 300 = 7 =
150" are very similar to what boundary layer solutions
predict. However, for 0 = 50" the plume begins to
form. The angular velocity drops to zero at # = 180" In

L
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FiG. 2. Angular velocity distribution at Re = 10°, Pr = 0.7.
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FiG. 3. Radial velocity distribution at Ra = 10°, Pr = 0.7.
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FIG. 4. Temperature distribution at Ra = 10°%, Pr = 0.7.

the plume, 8 ~ 175°, the angular velocity, or horizon-
tal velocity, is a function only of the horizontal
distance from the plume center line and is independent
of distance above the cylinder.

Radial velocities are fairly small and uniform
around the outer portion of the boundary layer where
the flow is moving toward the cylinder. This is shown
by the curves for 0° < 6 < 120° in Fig. 3. The flow
changes from inflow to outflow between 6 = 150° and
8 = 160°. The outflow velocities in the plume are
typically an order of magnitude larger than the inflow
velocities in the boundary layer. Near the cylinder the
vertical velocity in the center of the plume is less than
that at @ = 175°. However, for Y* > 4.5 the center line
velocity is the largest velocity in the plume. This
developing-plume phenomena was found experimen-
tally by Jodlbauer [19] who measured velocities and
temperatures at two locations in a plume above a
heated horizontal cylinder. A similar velocity distri-
bution has been found in a developing buoyant plume
above a heated vertical plate [20].

The temperature distribution at Ra = 10° and Pr =
0.7 is given in Fig. 4. The radial temperature profiles
are nearly similar in the boundary-layer region,0° < 0
< 120°. At larger angles the turning of the flow to form
the plume greatly alters the temperature distribution.

The thermal-boundary layer thickness is essentially
infinite near the center of the plume.

Local heat-transfer coefficients are shown as a
function of angle and Rayleigh number for Pr = 0.7 in
Fig. 5. The numerical solution to the boundary-layer
equations obtained by Merkin [12] is shown for
comparison. The boundary-layer result may be the
limiting case as Ra — oo for laminar flow excluding the
plume region. Even at Ra = 107 the difference between
the present local heat transfer and the boundary-layer
solution at the bottom of the cylinder, 8 = 0, is 9%,
With the exception of the region near § = 0, the
boundary layer may become turbulent before curva-
ture can be neglected. The boundary-layer solution
does not give an adequate prediction of the heat
transfer for 6 > 130°. Here the development of the
plume makes boundary-layer assumptions invalid.

Local heat-transfer coefficients at Pr = 0.1, 1.0 and
10.0 are given in Fig. 6 for Ra = 10*. The boundary-
layer solution obtained by Merkin [12] for Pr = 1 and
the perturbation solution from Akagi [13] also at Pr
= 1 are shown for comparison. The present results for
all three Prandtl numbers parallel the boundary-layer
solution when 8 is small. The curve for Pr 0.1
deviates from the boundary-layer trend near 8 = 90°
indicating that a wide plume is forming covering

/YT
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Influence o” Rayleigh number on local heat-transfer coefficients at Pr = 0.7.
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Fi. 6. Influence of Prandtl number on local heat-transfer coefficients at Ra = 10

nearly the top half of the cylinder. The curve for Pr =
101is roughly parallel to the boundary-layer curve until
# = 140° indicating the existence of a narrow plume
above the cylinder. The boundary-layer solution for Pr
= 1 gives heat-transfer coefficients that are con-
siderably less than the present results except in the
region of the plume, 150°< 6 < 180°. Akagi’s
perturbation solution gives values almost identical to
the present results for 0 < 6 < 90°. At larger angles the
agreement is not as good, indicating the breakdown of
the boundary-layer solution that is used as the first
term in his perturbation series.

EXPERIMENTAL VERIFICATION

A hollow copper cylinder, 3.56 cm in diameter and
20.3 cm long, was suspended from wires at each end in
the beam of a Mach-Zehnder interferometer. Six
thermocouples mounted in the horizontal cylinder
measure the angular- and axial-temperature va-
riations. An electric resistive element inside the tube
heats the cylinder to the desired temperature. Expan-
ded foam disks were added to thermally insulate the
ends. Large pieces of rigid insulation formed a cham-
ber approximately 80 cm across and 100 cm high. This
helped damp out room air fluctuations although gaps

were left near the top and bottom to allow the air to
circulate freely past the cylinder.

The electric power to the heater was adjusted until
the thermocouples measured a temperature difference
of 32.5°C between the cylinder surface and the ambient
air. A photograph of the infinite fringe pattern was
taken on 35 mm film after conditions had remained
stable for 30 min. The fringe pattern appeared sym-
metric about a vertical plane through the center of the
cylinder. Analysis of the data indicated a Rayleigh
number of 1.02 x 10° and a Prandt]l number of 0.705.
The film negative was analyzed on a toolmaker’s
microscope to measure the location of each half fringe
shift every 15° around one side of the cylinder. The
temperature of each fringe was calculated and the
resulting local natural-convection heat-transfer
coefficients determined.

Figure 7 is a comparison of the experimentally-
obtained fringe pattern or isotherm distribution and
the corresponding theoretical isotherms obtained
from the numerical solution for Ra = 10° and Pr =
(.7. The agreement is very good, especially in the
boundary-layer region. The temperature distributions
in the plume compare favorably. However, the
experimental-plume center-line temperature decreases

Table 1. Local and average heat-transfer coefficients from numerical solutions

=0

Ru Pr 3(r 60
10° 0.7 1.41 1.37 1.25
10! 0.7 1.83 1.79 1.67
102 0.7 271 2.66 2.51
103 0.7 3.89 385 172
104 0.7 6.24 6.19 6.01
10° 0.7 10.15 10.03 9.63
10° 0.7 16.99 16.78 16.18
107 0.7 29.41 29.02 2795
104 0.0! 3.63 3.56 a7
10* 0.1 5.25 5.16 489
10* 1.0 6.40 6.33 6.10
104 5.0 6.89 6.82 6.59
6.69

7.01 6.93

Nu
90 120° 1507 180" Nu
1.0% 0.87 0.68 0.56 1.04
1.47 1.21 0.94 0.81 1.40
223 1.80 1.27 0.97 2.05
3.45 293 2.01 1.22 3.09
5.64 4.82 314 1.46 4.94
9.02 791 5.29 1.72 8.00
15.19 13.60 9.38 212 13.52
26.20 23.46 16.48 2.51 2332
2.51 1.74 1.13 093 2.40
4.34 3.26 1.84 112 3.78
5.69 491 3.36 1.48 5.06
6.19 5.55 4.35 1.74 5.66
1.79 5.81

6.29 571 467
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FIG. 7. Comparison of experimental and numerical isotherms for air, Ra = 10°.

more rapidly than the prediction. This may be due to
end effects in the experiment where axial velocities at
the ends tend to make the plume neck down. Since the
interferometer is producing axially-integrated values
of the index of refraction or temperature, necking of
the plume would result in a faster drop in observed
temperature than in a strictly two-dimensional plume.

Comparison of the calculated angular velocity pro-
file for Ra = 105, Pr = 0.7 and 6 = 90° with
experimental measurements is given in Fig. 8. The
analytical result from Chiang and Kaye [ 7] for § = 90°
and Pr = 0.7 is given for comparison as being
representative of the boundary-layer solutions. The
measurements of Jodlbauer [19] agree with the pre-
sent calculations. Those of Aihara and Saito [ 18] agree

very well with the present results for Y* < 1 but are
closer to the boundary-layer solution for Y* > 2.

Comparison of the calculated temperature distri-
butions at Ra = 105, Pr = 0.7 and § = 90° and 180°
with experimental results is shown in Fig. 9. At § = 90°
the experimental values agree well with the numerical
results. At the plume center line, § = 180°, the
experimental results agree very well when Y* < 2. At
distances larger than this the agreement is not as good.

Experimental local heat-transfer coefficients for air
agree very well with the present numerical results for
Ra = 10% Pr = 0.7 as shown on Fig. 10. The
boundary-layer curve obtained by Merkin [12] is
shown for comparison.
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SUMMARY AND CONCLUSIONS

Solutions to the Navier—Stokes and energy equa-
tions have been obtained for natural-convection heat
transfer from a horizontal isothermal cylinder. Results
at small Rayleigh numbers approach natural con-
vection from a line heat source. Boundary-layer con-
ditions may be reached at the lower portion of the
cylinder when the Rayleigh number becomes very
large. Solutions to the laminar boundary-layer equa-
tions will not give accurate results at moderate values
of the Rayleigh number because curvature effects are
always present and boundary-layer approximations
are invalid in the region of the plume. Experimentally
determined velocities, temperatures and heat-transfer
coefficients agree with the present numerical results.
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SOLUTION NUMERIQUE DES EQUATIONS DE NAVIER-STOKES POUR LA
CONVECTION LAMINAIRE NATURELLE AUTOUR D’UN CYLINDRE CIRCULAIRE,
HORIZONTAL ET ISOTHERME

Résumé—La convection thermique laminaire, naturelle autour d’un cylindre horizontal, isotherme est
étudiée en résolvant les équations de Navier-Stokes et d’énergie & partir d’'une procédure numérique
elliptique. Des résultats sont obtenus pour 10° < Ra < 107, L’écoulement approche celui de la convection
naturelle 4 partir d’une source de chaleur linéaire quand Ra — 0 et celui de la couche limite laminaire quand
Ra — co. Des solutions de couche limite ne décrivent pas correctement 'écoulement et le transfert thermique
aux valeurs faibles ou modérées de Ra parce qu'elles négligent les effets de courbure et les hypothéses de
rupture de la couche limite dans la région du panache. On obtient un accord avec les résultats expérimentaux.
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NUMERISCHE LOSUNG DER NAVIER-STOKES-GLEICHUNGEN FUR
LAMINARE NATURLICHE KONVEKTION AN EINEM HORIZONTALEN
ISOTHERMEN KREISZYLINDER

Zusammenfassung-—Es wurde die Wiarmeubertragung durch laminare natiirliche Konvektion an einem
horizontalen isothermen Zylinder untersucht, indem die Navier-Stokes- und Energiegleichungen unter
Verwendung eines elliptischen numerischen Verfahrens gelost wurden. Ergebnisse wurden fur
10° € Ra < 107 erhalten. Fiir Ra - 0 nihert sich die Stromung der natiirlichen Konvektion einer
linienformigen Warmequelle und fiir R — 2 einer laminaren Grenzschichtstromung an. Grenzschichtlo-
sungen beschreiben die Stromung und Wirmeiibertragung bei kleinen oder mittleren Werten von Ra nicht
ausreichend, und zwar wegen der Vernachlassigung der Krimmungseinflusse und weil die Grenz-
schichtannahmen in Bereich der Schlieren nicht zutreffen. Gute Ubereinstimmung mit experimentellen
Ergebnissen wurde erzielt.

YHUCJIEHHOE PEHIEHHE VPABHEHUHN HABBE CTOKCA /1718 JIAMUHAPHOM
ECTECTBEHHOMW KOHBEKUHH ¥V TOPU3OHTAJILHOIO U30TEPMHUUYECKOTO
KPYT'JIOI'O HHUJIMHPA

Annorauus — TennoobmeH 11PH JaMHHAPHOH KOHBEKIHM OT TOPH3OHTAJILHOIO H3OTEPMHYECKOrO
HMIMHAPA HCCIIEAYeTCs METO/0M uHCIeHHOTo penlesus ypaBHeHHit Haspe-Crokca u “Hepruu. Pe-
3yJAbLTATH NOJNYYEHBl B AMana3oHe wucen Ra o1 10° jgo 107, IMpu Ra — 0 Teuyenne npuobperaet
XapakTep cBOOOJHOKOHBEKTHBHOIO 110TOKAa OT JHMHEHHOIO HCTOYHHMKA Tennia. a npu Ra — 7. -— JAdMH-
HAPHOTO TEYEHHH B MOrPAHMYHOM CJ0€. YCTAHOBICHO, YTO [IPU HM3KHUX M YMEPEHHBIX 3HAYEHUSX
4ucia Ra TeyeHHe M TEMIONEpPeHOC HEeMb3s AJeKBATHO OMHCATHL ¢ MOMOUILIO PEIiEHUA B NPHOITHNKe-
HHH TIOTPAHHYHOIO CI0S W3-3a TNpeHeOpexeHHs IDPEKTAMH KPHUBU3HBL M HADYINEHHS 10MYLUCHHH
NOrPaRAYHOrO cJ10s B 001acTH CBOGOJHOKOHBEKTHBHOTO BOCXOASIUErO ABMxeHus. [losyueno xopouiee
COBMNAIEHHE C IKCAEPUMEHTANBHBIMY AaHHbIMH.



