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Abstract-Laminar natural-convection heat transfer from a horizontal isothermal cylinder is studied by 
solving the Navier-Stokes and energy equations using an elliptic numerical procedure. Results are obtained 
for 10’ 5 Ra < 10’. The flow approaches natural convection from a line heat source as Ra -+ 0 and laminar 
boundary-layer flow as Ra + UI. Boundary-layer solutions do not adequately describe the flow and heat 
transfer at low or moderate values of Ra because of the neglect of curvature effects and the breakdown of the 
boundary-layer assumptions in the region of the plume. Good agreement with experimental results is 

achieved. 

NOMENCLATURE 

cylinder diameter ; 
gravitational acceleration; 

local heat-transfer coefficient; 
average heat-transfer coefficient around 
cylinder ; 
thermal conductivity of fluid; 

radial distance between cylinder surface and 
outer boundary of solution domain ; 
local Nusselt number, hD/k; 
average Nusselt number, &D/k; 
Prandtl number, v/a; 
heat transfer from cylinder per unit length, 
&CD(T, - T,); 
radial coordinate; 
dimensionless radial coordinate, R/D; 
Rayleigh number, gpD3(Tw - T&cc ; 
temperature; 
temperature of cylinder surface; 

temperature of ambient fluid; 
radial velocity, positive outwards ; 
UD/uRa’14 ; 
dimensionless radial velocity, UD/a; 

angular velocity, positive upward; 
VD/uRa”‘; 
dimensionless angular velocity, I/D/a; 
radial distance from cylinder surface ; 
YRa’14/D. 

Subscripts 

4 radial grid number; 

J3 angular grid number. 

NATURAL convection about a single horizontal cir- 

cular cylinder of uniform temperature suspended in an 
infinite fluid medium has been studied both experi- 

mentally and analytically for several decades [I]. At 

small Rayleigh numbers the cylinder behaves like a 
line heat source. Asymptotic matching solutions have 
been obtained at low Rayleigh numbers by Nakai and 
Okazaki [Z], where an inner conduction-dominated 
region is matched to an outer region governed mainly 
by convection. 

For moderately large Rayleigh numbers, lo4 < Ra 
< 108, the flow is laminar and forms a boundary layer 

cal, positive counter-clockwise on right half 
of cylinder, 0 5 0 5 n; 
dimensionless temperature, 

V- - W/V, - T,); 
difference between adjacent dimensionless 
isotherms ; 
dimensionless stream function; 

difference between adjacent dimensionless 
streamlines; 
dimensionless vorticity. 

INTRODUCTION 

Greek symbols 
around the cylinder. The assumptions usually made are 
that curvature effects and the pressure difference across 

a, thermal diffusivity ; 
P> thermal coefficient of volumetric expansion ; 

the boundary layer are negligible. Using these assum- 

8, angular coordinate, zero is downward verti- 
ptions, the simplified boundary-layer equations have 
been solved using a variety of techniques. Hermann 

971 



912 T. H. KC~HN and R. J. GOLDSTEN 

[3] modified Pohlausen’s similarity solution for the 
vertical flat plate at Pr = 0.733. The boundary-layer 
thickness at different angles around the cylinder was 
obtained by multiplying the flat-plate boundary-layer 
thickness by a parameter that is a function only of 
angle from the stagnation point. The vertical flat-plate 
boundary-layer solutions given by Ostrach [4] can be 
used to obtain solutions at other Prandtl numbers. 
Merk and Prins [S] obtained a similarity solution 
valid near the stagnation point and later presented an 
integral solution. Another integral solution was given 
by Levy [6]. Chiang and Kaye [7] used a Blasius 
expansion to obtain solutions for cylinders with 
varying wall temperature at Pr = 0.7. A Gortler 
expansion technique was used by Saville and Churchill 
[8] to investigate the effect of the Prandtl number. A 
solution to the transient problem was obtained by 
Elliott [9] with the results at infinite time given as the 
steady-state solution. Lin and Chao [lo] used a Merk- 
type series to obtain solutions for various two- 
dimensional and axisymmetric geometries with the 
horizontal circular cylinder as a special case. Finite 
difference solutions have been obtained by Merkin 
[ 11,121 for horizontal circular and elliptic cylinders of 
uniform temperature or uniform heat flux. 

Investigations incorporating curvature effects have 
been made by Akagi [13], Peterka and Richardson 
[14] and Gupta and Pop [15]. The curvature effects 
were found to be small when Ra > 10’ near Pr = I. 
However, Akagi remarks that for Pr c I or Pr >> 1 

curvature effects exist even at a very large Rayleigh 
number. 

The objective of this study is a solution of the 
complete Navier-Stokes and energy equations for 
natural convection about a horizontal isothermal 
circular cylinder. Solutions have been obtained over a 
wide range in Rayleigh number, 10’ 2 Ra 5 IO’, 
where neither asymptotic matching techniques nor 
boundary-layer assumptions are accurate. Results 
include the development of the buoyant plume which 
cannot be obtained using boundary-layer methods. 
The solutions are compared with experimental data 
for verification. 

GOVERNING EQUATIONS 

The dimensionless equations for steady. laminar, 
natural-convection flow can be written in cylindrical 
polar coordinates using the Boussinesq approxi- 
mation as follows : 

v21j = -w. (1) 

with 

v2F$+! “+f g2. 
r ?r 

(4) 

The flow is considered to be symmetric about the 
vertical plane passing through the center of the 
cylinder so that the flow on only one side needs to be 
solved. The boundary conditions become 

on the impermeable isothermai cylinder surface and 

on the symmetry lines. The outer boundary must be 
treated as two parts; one with fluid coming into the 
solution domain, the other with fluid leaving. The fluid 
is assumed to approach the cylinder radially at 
ambient fluid temperature. The inflow boundary con- 
ditions are 

The fluid is assumed to leave radially in the plume with 
negligible radial-temperature gradient. This is a com- 
mon type of outflow boundary condition providing 
the velocity is large (i.e. Ptj x I). The outflow 
boundary conditions become 

L’ = (‘“$ _=__ = 
&.2 (8) 

SOLUTION TECHNIQUE 

A finite-difference overrelaxation method is used to 
solve the elliptic equations numerically. A central 
differencing scheme is used for the majority of the 
solutions although a hybrid technique is used to 
maintain stability at large Ru. For example, equation 
(3) can be written in finite difference form as 

4i.i = 1yi,j4i*l.j + si.jdi- 1 ! 

+ Ei.@s.p 1 + wi.J4i.,- 1, f9) 

The coefficients are calculated as follows : 

where the first term in the brackets is the standard 
central-difference formulation. Similar expressions are 

used to obtain Si.j, EI.j and W&. It can be seen from 
equation (10) that when the velocity is large the 
central-difference coefficients can become negative 
leading to divergence in the computations. By taking 
the largest non-negative term of the three terms in the 
brackets the coefficients N’, S’, E’ and w’ remain 
positive or zero. The coefficients used in (9) are then 
obtained as 

Q = N;,j + S;,j + El,/ + “;,j, (11) 

N,,j = N;,j@ s,,j = s;,j/Q. 

E,,j = E;,j/Q, W,,j = W:,,:Q. (12) 

When the velocities are small this scheme reduces to 
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AY = 2 

(a) Ra = 10’. 

AT = 4 A$ = 0.1 

A( = 0.1 

(b) Ra = 10’. 

I\ \ 
I 

AY = 10 A$ = 0.1 

(c) Ra = 104. (d) Ra = 106. 

FIG. 1. Streamlines and isotherms at four values of the Rayleigh number, Pr = 0.7. 

the second-order central-difference formulation. on the results if it is not set far enough from the surface 
The radial grid spacing is basically O.lL although of the cylinder. The distance varies from D I L < 20~1 

this is reduced to as low as 0.0125L near the cylinder. depending on the Rayleigh and Prandtl number. Only 
The angular grid lines are spaced every 10” except in results from the inner 2/3 of the solution domain are 
the region of the plume where a 2.5” angular spacing is presented since those of the outer l/3 depend slightly 
used. The position of the outer boundary has an effect on the location of the outer boundary. The change of 

H.M.T. 2311-E 
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outer-boundary conditions from inflow to outflow is 
set near B = 150”, which is near the position of the 
maximum stream function. Moving 10“ either side of 

this position does not change the results significantly. 
Further details of the numerical method are given in 

reference [16]. 

NUMERICAL RESULTS 
Several solutions are obtained at Pr = 0.7 over the 

range 10’ < Ra I 10’. Stream lines and isotherms 

from some of these are shown in Fig. 1. The tempera- 
ture distribution at Ra = 10’ given in Fig. l(a) 

resembles what would be found near a line heat source. 

The flow is basically upward, convecting heat from the 
cylinder in a well-defined plume. The Rayleigh number 

is above the range covered by Nakai and Okazaki [2], 
so a direct comparison is not possible. Analysis of a 

buoyant plume above a horizontal line heat source 
indicates that the center line temperature should be 
proportional to the - 3/5 power of the distance above 
some starting point when the plume is fully developed. 

This has been confirmed experimentally by Schorr and 
Gebhart [17]. The calculated plume center line tem- 

perature for Ra = 10’ and Pr = 0.7 is correlated by 

where R is the vertical distance measured from the 

center of the cylinder. The same slope correlates the 
plume center line temperature when RCI =- IO’ and Ii)-‘ 
providing the center of the cylinder 1s the origin This 

indicates that the plume has not reached :I l’iull> 
developed condition in the present solutions 

At larger Rayleigh numbers a boundary layer form5 
around the cylinder as shown in Fig. Ilc) and l(d j. A? 

Ra = IO4 the boundary-layer thickness is approximately 

equal to the cylinder radiu\ The assmnp!ion <>I 

negligible curvature effect is not balid at this Rayleigh 

number so the solution to the boundary-layer equ;+ 
tions does not give valid results here. However. ;II ~(1 

= IO” the boundary-layer thickness has become much 
thinner than the cylinder radius as ShoWI in Fig. 1 (d) b~t 
the boundary-layer model should gl\e fairly accurate 

results. The majority of the flow appioaches lhc 
cylinder from the side as opposed to the hottom .L{ 
large Rayleigh numbers. This agrees wrth the expert- 
mental observations of Aihara and Saito [IX]. 

Velocity and temperature distributions at KC! : ICY 
and Pt’ = 0.7 are given in f,rgs. ? 4 The ;ingui;r~ 
velocity distributions show-n m l’ig _’ for 30 ‘- !I 

150" are very similar to what baundarh iayer solutlona 

predict. However, for 0 Y\ 150 the plume begins to 
form. The angular velocity drops to Lcro at 0 := i 80 II! 

FIG. 2. Angular velocity distribution at Ra = IO”, Pr = 0.7 

FIG. 3. Radial velocity distribution at Ru = lo", Pr = 0 7. 
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4 5 6 7 8 9 10 

FIG. 4. Temperature distribution at Ra = 10’. Pr = 0.7. 

the plume, 6 5 175”, the angular velocity, or horizon- 
tal velocity, is a function only of the horizontal 
distance from the plume center line and is independent 
of distance above the cylinder. 

Radial velocities are fairly small and uniform 
around the outer portion of the boundary layer where 
the flow is moving toward the cylinder. This is shown 
by the curves for 0” I 6 I 120” in Fig. 3. The flow 
changes from inflow to outflow between 0 = 150” and 
fI = 160”. The outflow velocities in the plume are 
typically an order of magnitude larger than the inflow 
velocities in the boundary layer. Near the cylinder the 
vertical velocity in the center of the plume is less than 
that at 0 = 175”. However, for Y* > 4.5 the center line 
velocity is the largest velocity in the plume. This 
developing-plume phenomena was found experimen- 
tally by Jodlbauer [19] who measured velocities and 
temperatures at two locations in a plume above a 
heated horizontal cylinder. A similar velocity distri- 
bution has been found in a developing buoyant plume 
above a heated vertical plate [20]. 

The temperature distribution at Ra = lo5 and Pr = 
0.7 is given in Fig. 4. The radial temperature profiles 
are nearly similar in the boundary-layer region, 0” I 0 
< 120”. At larger angles the turning of the flow to form 
the plume greatly alters the temperature distribution. 

The thermal-boundary layer thickness is essentially 
infinite near the center of the plume. 

Local heat-transfer coefficients are shown as a 
function of angle and Rayleigh number for Pr = 0.7 in 
Fig. 5. The numerical solution to the boundary-layer 
equations obtained by Merkin [12] is shown for 
comparison. The boundary-layer result may be the 
limiting case as Ra + cc for iaminar flow excluding the 
plume region. Even at Ra = 10’ the difference between 
the present local heat transfer and the boundary-layer 
solution at the bottom of the cylinder, 8 = 0, is 9%. 
With the exception of the region near 0 = 0, the 
boundary layer may become turbulent before curva- 
ture can be neglected. The boundary-layer solution 
does not give an adequate prediction of the heat 
transfer for I!I > 130”. Here the development of the 
plume makes boundary-layer assumptions invalid. 

Local heat-transfer coefficients at Pr = 0.1, 1.0 and 
10.0 are given in Fig. 6 for Ra = 104. The boundary- 
layer solution obtained by Merkin [12] for Pr = 1 and 
the perturbation solution from Akagi [13] also at Pr 
= 1 are shown for comparison. The present results for 
all three Prandtl numbers parallel the boundary-layer 
solution when 6 is small. The curve for Pr = 0.1 
deviates from the boundary-layer trend near 8 = 90 
indicating that a wide plume is forming covering 

FIG. 5. Influence 0“ Rayleigh number on local heat-transfer coefficients at Pr = 0.7. 



-1. tl. I<[ I H\ and R. J GOLI)ST~:IN 

FIG. 6. Influence of Prandtl number on local heat-transfer coefficients at Ru = 10’. 

nearly the top half of the cylinder. The curve for Pr = 

10 is roughly parallel to the boundary-layer curve until 
0 = 140” indicating the existence of a narrow plume 

above the cylinder. The boundary-layer solution for Pr 
= 1 gives heat-transfer coefficients that are con- 
siderably less than the present results except in the 
region of the plume, 150”~ P I 180’. Akagi’s 
perturbation solution gives values almost identical to 
the present results for 0 I 0 < 90’. At larger angles the 
agreement is not as good: indicating the breakdown of 

the boundary-layer solution that is used as the first 

term in his perturbation series. 

EXPERIMENTC VERIYIC’ATIO~ 

A hollow copper cylinder, 3.56 cm in diameter and 
20.3 cm long, was suspended from wires at each end in 

the beam of a Mach-Zehnder interferometer. Six 
thermocouples mounted in the horizontal cylinder 
measure the angular- and axial-temperature va- 

riations. An electric resistive element inside the tube 

heats the cylinder to the desired temperature. Expan- 
ded foam disks were added to thermally insulate the 

ends. Large pieces of rigid insulation formed a cham- 
ber approximately 80 cm across and 100 cm high. This 

helped damp out room air fluctuations although gap\ 

were left near the top and bottom to allow the air to 
circulate freely past the cylinder. 

The electric power to the heater was adjusted until 

the thermocouples measured a temperature difference 
of 32.5”C between the cylinder surface and the ambient 

air. A photograph of the infinite fringe pattern was 

taken on 35 mm film after conditions had remained 
stable for 30min. The fringe pattern appeared sym- 
metric about a vertical plane through the center of the 

cylinder. Analysis of the data indicated a Rayleigh 

number of 1.02 x lo5 and a Prandtl number of 0.705. 
The film negative was analyzed on a toolmaker’s 
microscope to measure the location of each half fringe 
shift every 15” around one side of the cylinder. The 

temperature of each fringe was calculated and the 
resulting local natural-convection heat-transfer 
coefficients determined. 

Figure 7 is a comparison of the experimentally- 
obtained fringe pattern or isotherm distribution and 
the corresponding theoretical isotherms obtained 
from the numerical solution for Ru = 10’ and Pr = 
0.7. The agreement is very good. especially in the 

boundary-layer region. The temperature distributions 
in the plume compare favorably. However, the 
experimental-plume center-line temperature decreases 

Table 1 Local ,ind average heat-transfer coefficients from numerical solutions 

\ I, 

Rll PI 0 ~= 0 30‘ 60 90 IN 150 

10” 0.7 I.41 1.37 I .25 I .Oh 0.87 0.68 
10’ 0.7 I.83 1.79 I .67 1.31 1.21 0.94 
10’ 0.7 2.71 2.66 ? 51 2 .2 3 I.80 1.27 
lo3 0.7 3.89 3.85 ; 12 3.45 2.93 2.01 
lo4 0.7 6.24 6 I9 Co I 5.64 4.82 3.14 
lo5 0.7 10.15 IO.03 9.65 9.0’ 7.91 5.29 
lob 0.7 16.99 16.78 16.18 15.10 13.60 9.38 
lo7 0.7 ‘9.41 29.07 27 95 26.20 23.46 16.48 
lo4 0 01 3.63 3.56 3 I7 1.51 I .74 I.13 
lo4 0.1 5.25 5.16 4.89 4.34 3.26 1.84 
lo4 1.0 6.40 6.33 6.10 5.69 4.9 1 3.36 
LO4 5.0 6.89 6.82 6.59 6.19 5.55 4.35 
lo4 10.0 7.01 6.93 6.69 6.29 5.71 4.61 

1 FL1 Yli 

O.Sh I .04 
0.81 1.40 
0.97 2.05 
1.22 3.09 
I 46 4.94 
1.72 8.00 
2.12 13.52 
2.51 23.32 
0.93 2.40 
1.12 3.78 
I .4x 5.06 
I.74 5.66 
1.79 5.81 
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FIG. 7. Comparison of experimental and numerical isotherms for air. Ra = 105. 

more rapidly than the prediction. This may be due to 

end effects in the experiment where axial velocities at 
the ends tend to make the plume neck down. Since the 
interferometer is producing axially-integrated values 
of the index of refraction or temperature, necking of 
the plume would result in a faster drop in observed 
temperature than in a strictly two-dimensional plume. 

Comparison of the calculated angular velocity pro- 
file for Ra = lo’, Pr = 0.7 and f3 = 90” with 
experimental measurements is given in Fig. 8. The 
analytical result from Chiang and Kaye [7] for 0 = 90” 
and Pr = 0.7 is given for comparison as being 
representative of the boundary-layer solutions. The 
measurements of Jodlbauer [19] agree with the pre- 
sent calculations. Those of Aihara and Saito [lS] agree 

very well with the present results for Y* < 1 but are 
closer to the boundary-layer solution for Y* > 2. 

Comparison of the calculated temperature distri- 
butions at Ra = 105, Pr = 0.7 and f3 = 90” and 180” 

with experimental results is shown in Fig. 9. At B = 90” 
the experimental values agree well with the numerical 
results. At the plume center line, 0 = 180”, the 
experimental results agree very well when Y* < 2. At 
distances larger than this the agreement is not as good. 

Experimental local heat-transfer coefficients for air 
agree very well with the present numerical results for 
Ra = 105, Pr = 0.7 as shown on Fig. 10. The 
boundary-layer curve obtained by Merkin [12] is 
shown for comparison. 
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FIG. 8. Comparison of experimental and theoretical angular velocities for air at 0 --= 90 neal Rtr = 10’ 
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FIG. 9. Comparison ofexperimental and theoretical temperatures for air at M = 90‘ and 1X0 near RU = 1U‘ 

NUMERICAL 
SOLUTION 

0 1.e x 105 [?l' 

c\ i.0 x 104 [?3! 

o 1.0 x lo5 PRESENl 
FXPERlMENT 

0.01. I 1 ’ 0 70 40 60 ---“----k--&- 80 + 

FIG. 10. Comparison of experimental and theoretical local heat-transfer coefficients for air near Ra = 10’. 
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SUMMARY AND CONCLUSIONS 

Solutions to the Navier-Stokes and energy equa- 

tions have been obtained for natural-convection heat 
transfer from a horizontal isothermal cylinder. Results 
at small Rayleigh numbers approach natural con- 
vection from a line heat source. Boundary-layer con- 
ditions may be reached at the lower portion of the 
cylinder when the Rayleigh number becomes very 
large. Solutions to the laminar boundary-layer equa- 
tions will not give accurate results at moderate values 
of the Rayleigh number because curvature effects are 
always present and boundary-layer approximations 
are invalid in the region of the plume. Experimentally 
determined velocities, temperatures and heat-transfer 
coefficients agree with the present numerical results. 
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SOLUTION NUMERIQUE DES EQUATIONS DE NAVIER-STOKES POUR LA 
CONVECTION LAMINAIRE NATURELLE AUTOUR D’UN CYLINDRE CIRCULAIRE, 

HORIZONTAL ET ISOTHERME 

R&urn&La convection thermique laminaire, naturelle autour d’un cylindre horizontal, isotherme est 
itudite en resolvant les Equations de Navier-Stokes et d’knergie B partir d’une proctdure numCrique 
elliptique. Des rCsultats sont obtenus pour 10’ < Ra < 10’. L’&oulement approche celui de la convection 
naturelle a partir d’une source de chaleur lineaire quand Ra --t 0 et celui de la couche limite laminaire quand 
Ra + CC. Des solutions de couche limite ne dCcrivent pas correctement l%coulement et le transfert thermique 
aux valeurs faibles ou mod&es de Ra parce qu’elles ntgligent les effets de courbure et les hypothbses de 
rupture de la couche limite dans la r6gion du panache. On obtient un accord avec les rCsultats exp&imentaux. 
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NUMERISCHE LijSUNG DER NAVIER-STOKES-GLEICHUNGEN FtcR 
LAMINARE NATijRLICHE KONVEKTION AN EINEM HORIZONTALEN 

ISOTHERMEN KREISZYLINDER 

Zusammenfassung -~I3 wurde die Warmeiibertragung durch laminare natiirliche Konvektlun an einem 
horizontalen isothermen Zylinder untersucht, indem die Navier-Stokes- und Energiegleichungen unter 
Verwendung eines elliptischen numerischen Verfahrens gel&t wurden. Ergebnisse wurden ftir 
10’ < Ru < 10’ erhalten. Fiir Ra 4 0 nahert sich die Striimung der natiirlichen Konvektion einer 
linienfiirmigen Warmequelle und fiir Ru --t -x elncr laminaren Grenzschichtstrtimung an. Grenrschichtlii- 
sungen beschreiben die Stromung und Warmeiibertragung bei kleinen oder mittleren Werten von Ra nicht 
ausreichend, und zwar wegen der Vernachlassigung der Kriimmungseinflusse und well die Grenz- 
schichtannahmen in Bereich der Schheren nicht zutreffen. Gute iibereinstimmung mit experimentellen 

Ergebnissen wurde erzielt. 

‘4MCJIEHHOE PEIIJEHHE YPABHEHMfi HABbE CTOKCA flflR JIAMMHAPHOR 
ECTECTBEHHOfi KOHBEKLIMM Y TOPM30HTAJIbHOTO M30TEPMMqECKOI-0 

KPYI-nOI. LIMJlMHflPA 

AHHOTaUWn ~ Tennoo6MeH fops .2aMmtapHoii KonBeKIuit4 0 I ropmowanbHor0 moTepmweCKor0 

uHneHnpa accnexyexs MeTojloM qmneworo pemelten ypasHeHuti Hasbe-CroKCa H mepr'm. Pe- 

3ynbTaTbl nonyqeHb1 B mma3oHe wce:I Ra 01 IO0 x0 10' npw Ra 4 0 Teqewie rlpMo6peTaer 
XapaKTep CB06ODHOKOHBeKTNBHOI.O IlOTOKa OT JiHHefiHOIO HCTO'iHAKa renna. a np&i Ra + 7 .xiMH- 
HapHoro TeqeHm B norpanRrnoh4 cnoe. Ycla~oe;reno. ~110 npH uM3K~x w ylepeicnblx iuaqenH*x 
qAcna Ro TeqeHcie u i-ennonepeHoc Henb3x aaeKsaTtt0 onmarb C noivtoubm perrreHm B npks6xmw 

HUH norpaHwwor0 Cn01l w-m npeHe6pexeHm ~~~~eK~ilMti KpkmmHbI M HapymeHas ;lonyruerlrtil 

TIO~paHRUHO~OC.?O!4 B o6nac.ru CB060~HOKOHBeKTHBHOr0 BOCXOIV,UerO flBWKeH&E. nO:ly',eHO XOpOWeC 


